annexe D4

cahier des charges applicable dans le cadre des offres d’Accès aux Installations Aériennes

Accès au Génie Civil et Appuis Aériens pour le déploiement de Boucles et Liaisons Optiques
table des matières

Dispositions générales... 4
article 1 - préambule... 4
article 2 - domaine d’utilisation .. 4
article 3 - obligation en matière d’hygiène et sécurité ... 5
article 4 - sécurité des personnes et des biens ... 5
article 5 - dispositions constructives générales ... 5
article 6 Conditions techniques pour la pose des câbles optiques 6
 6.1 Généralités : .. 6
 6.2 Installation des câbles optiques .. 6

ANNEXE : Cahier des charges appuis aériens ... 8
article 1 - dispositions constructives pour la réalisation des études par
l’Opérateur .. 8
 1.1 Description de l’opération ... 8
 1.2 Reconnaissance terrain ... 8
 1.2.1 Environnement de l’appui .. 8
 1.2.2 Aspect sécurité de l’appui ... 8
 1.2.3 Réalisation des tests de l’appui .. 10
 1.2.4 Vérification de l’encombrement de l’appui ... 12
 1.3 Le calcul de charges .. 12
 1.3.1 Rajout du ou des câbles optiques pour le calcul de charges 12
 1.3.2 Envoi des données terrain par l’Opérateur au guichet unique de traitement des commandes 12

article 2 - dispositions constructives et conditions techniques pour la pose de
câbles optiques sur les artères aériennes ... 12
 2.1 Description des opérations ... 12
 2.2 Conditions techniques pour l’installation des armements ... 13
 2.2.1 Exemple de différentes configurations d’armements avec rehausse dédiée à la pose des câbles optiques ... 15
 2.2.2 Cas particuliers des poteaux déjà équipés de rehausse .. 17
 2.2.3 Cas particuliers des poteaux permettant la pose d’un armement en tête de poteau 17
 2.3 Conditions techniques pour la pose des câbles optiques .. 19
 2.3.1 Installation des câbles optiques .. 19
 2.3.2 Mise en tension des câbles sur une artère ou sur des tronçons 21
 2.3.3 Réglage et transfert des câbles au niveau de chaque arrêt ... 23
 2.3.4 Installation des boîtiers optiques PEO sur un Appui ... 26
 2.3.5 Cheminements des câbles sur un Appui ... 27
 2.3.6 Installation d’un système lovage sur un Appui ... 27
article 3 - dispositions constructives et conditions techniques pour le recalage, la réimplantation, le remplacement et la consolidation des appuis existants ..30

3.1 Description de l'opération...30
3.2 Conditions techniques de recalage, de réimplantation, de renforcement ou de remplacement d’un appui existant ..31
 3.2.1 Le recalage et/ou la réimplantation d’un appui existant ..31
 3.2.2 Le renforcement d’un appui existant31
 3.2.3 Le remplacement d’un appui existant38

article 4 – les matériels...41

4.1 Les différents poteaux utilisés sur le RIP ...42
 4.1.1 Les poteaux bois ...42
 4.1.2 Les poteaux métalliques ...44
 4.1.3 Les poteaux composites ..46
4.2 Les matériels d’armement ..47
 4.2.1 Rehausse pour réseaux optiques ...47
 4.2.2 Rehausse pour Mât Lorrain ...49
 4.2.3 Traverses standards 5/7, 5/14 et 5/1549
 4.2.4 Ferrure d’étoilement ..50
 4.2.5 Semelle pour appui bois S 190 (ou appui commun)50
 4.2.6 Semelle bois 5/16 pour traverse51
 4.2.7 Console universelle UPB ..51
 4.2.8 Console traverse universelle CT851
 4.2.9 Semelle Alpax ...
Dispositions générales

article 1 - PREAMBULE

Ce document a pour objet dans le cadre exclusif de l’offre d’Accès aux artères aériennes pour les réseaux en fibre optique :

- de préciser les modalités techniques à mettre en œuvre par l’Opérateur pour procéder à la pose de Câbles Optiques sur les artères aériennes.
- de décrire les dispositions constructives et les matériels à utiliser.

L’exécution des travaux ne peut commencer qu’après la signature du Contrat d’Accès au Génie Civil et Appuis Aériens pour le déploiement de Boucles et Liaisons Optiques entre l’Opérateur et le RIP et la remise d’un plan de prévention cosigné par l’Opérateur et son prestataire.

Le RIP pourra réaliser à tout moment des contrôles sur chantier afin de vérifier par sondage le respect des Règles d’Ingénierie et des dispositions du présent Cahier des Charges. En cas de non-respect, l’Opérateur procède, à ses frais, aux aménagements nécessaires, comme décrit dans le Contrat.

Le RIP vérifiera si les corrections demandées ont bien été prises en compte par l’Opérateur. A défaut, le RIP apportera les corrections demandées aux frais de l’Opérateur, sans préjudice de tous dommages et intérêts que le RIP se réserve le droit de réclamer en raison du préjudice subi.

L’Opérateur devra respecter les textes réglementaires concernant la protection des personnes et des matériels et notamment :
- L’arrêté du 2.4.91 fixant les conditions techniques auxquelles doivent satisfaire les distributions d’énergie électrique.
- L’arrêté du 17 mai 2001 fixant les conditions techniques auxquelles doivent satisfaire les distributions d’énergie électrique.
- Le décret 2004-924 du 1er septembre 2004 qui traite des travaux temporaire en hauteur
- Code du travail
- L’interdiction d’ascension des poteaux Bois
- La convention de bonne pratique ACNET/SERCE/OPPBTP

article 2 - DOMAINE D’UTILISATION

Le RIP met à disposition de l’Opérateur des Installations pour poser exclusivement des Câbles Optiques diélectriques. Les signaux transportés ne doivent en aucun cas perturber le fonctionnement des équipements existants.

Dans le cas où les Installations existantes s’avéreraient insuffisantes, il appartient à l’Opérateur de trouver une autre solution.
article 3 - OBLIGATION EN MATIERE D’HYGIENE ET SECURITE

Le RIP, l’Opérateur et leurs prestataires éventuels endossent individuellement la responsabilité pleine et entière :
• de la sécurité de leurs agents et prennent notamment toutes les dispositions nécessaires pour faire respecter les règles en vigueur, en matière de sécurité et d’hygiène et de conditions de travail.
• des conséquences éventuelles que le chantier ouvert par leur personnel peut engendrer vis-à-vis des tiers et des réseaux déjà installés.

article 4 - SECURITE DES PERSONNES ET DES BIENS

Des dispositions doivent être prises pour garantir :
• la sécurité des tiers,
• la sécurité des personnes intervenant sur les différents réseaux.

Le RIP ne peut en aucun cas être tenu responsable pour l’absence de dispositif de protection contre la foudre ou les surtensions ou pour son non fonctionnement.

Les directives de l’UIT-T concernant la protection des lignes de télécommunication doivent être respectées.

En particulier, l’Opérateur prend les mesures nécessaires contre les effets préjudiciables des ouvrages électriques principalement les élévations de potentiel de sol et l’induction afin de ne pas endommager le réseau du RIP et ne pas mettre en danger les intervenants.

De même, l’Opérateur prend toutes les mesures nécessaires contre les risques liés aux travaux au voisinage de lignes électriques souterraines et aériennes afin de ne pas mettre en danger les intervenants.

article 5 - DISPOSITIONS CONSTRUCTIVES GENERALES

L’Opérateur ayant tous les accords pour réaliser des travaux en domaine public, peut accéder aux artères aériennes sans accompagnement du RIP, en respectant scrupuleusement les consignes de sécurité pour les riverains, les usagers et son personnel ou ses Prestataires.

Si l’Opérateur emploie un Prestataire, il a l’entièreté responsabilité de le contrôler et de veiller à l’application de l’ensemble des Règles de Sécurité. Tous les intervenants sur les artères aériennes doivent disposer de toutes les habilitations requises (électriques et travaux en hauteur notamment)

Dans tous les cas, l’Opérateur fait son affaire de la localisation des Appuis qu’il souhaite utiliser. Il lui appartient également de vérifier l’appartenance de chaque poteau. Dans le cas contraire, l’opérateur doit s’adresser directement au propriétaire du poteau concerné (ENEDIS, syndicat d’électrification, commune, Opérateur Tiers).

Pour tous les poteaux non accessibles à cause de travaux de voirie (avec ou sans coordination de sécurité, entrepôt provisoire de matériaux, etc....) ou à cause de stationnement gênant, l’Opérateur prend contact avec le gestionnaire de voirie, sous sa seule responsabilité.

L’Opérateur ne pourra pas se retourner contre le RIP à cause d’un retard dû à une difficulté d’accès de l’appui : l’Opérateur se doit d’être équipé en conséquence pour assurer toute sa sécurité et le respect de son planning de travaux.

Le RIP n’interviendra pas, sous quelque forme que ce soit, pour traiter les problèmes d’accès à ses poteaux, les Opérateurs ou leurs prestataires devant être équipés des matériels nécessaires à leurs interventions.

L’Opérateur s’engage à signaler toute anomalie grave constatée sur les poteaux et pouvant générer des problèmes de sécurité. L’Opérateur informe le RIP de la mise à niveau nécessaire de son artère au numéro 3900 ou via l’application du RIP disponible sur smartphone « Dommages réseaux ». L’Opérateur laisse les protections de chantier si nécessaire, jusqu’à l’intervention du RIP.
article 6 CONDITIONS TECHNIQUES POUR LA POSE DES CABLES OPTIQUES

6.1 Généralités :

La pose des câbles optiques étant réalisée sur des artères existantes, l'Opérateur devra se conformer aux Règles d'Ingénieries décrites dans l'annexe D3 et prendre toutes les précautions d'usage pour ne pas créer de dommages aux installations déjà en service lors du déploiement des câbles optiques.

L'Opérateur devra disposer de toutes les autorisations nécessaires pour intervenir dans la zone à déployer (autorisation de voirie, arrêté de circulation, plan de prévention éventuel…) et respecter les réglementations relatives aux travaux en hauteur tout particulièrement aux abords des lignes électriques (BT, HTA) ou de tout autre réseau présentant des risques particuliers.

L'opération consiste à installer différents dispositifs d’accroche adaptés aux câbles optiques à déployer par l’Opérateur et cela sur des armements dédiés installés au préalable au-dessus des nappes de câbles existantes.

Les dispositifs d’arrêt et de suspension sont dans le chapitre relatif au matériel : Ces dispositifs doivent être adaptés aux différents types de câbles optiques, et être mis en œuvre afin d'assurer la pérennité des artères déployées et de limiter les risques de dommages collatéraux en cas de rupture.

Arrêt et maintien des câbles :

Les câbles optiques seront arrêtés par simple ou double ancrage :

- Au minimum toutes les 5 portées en ligne droite
- A chaque transition aéro-souterraine ou descente vers un boîtier de raccordement
- Dans les courbes
- De part et d’autre des traversées de routes
- Autant de fois que cela sera jugé nécessaire de par la configuration de l’artère (contraintes liées à l’encombrement de l’appui, des dispositifs de suspension eux-mêmes ou encore aux possibilités d’implantation de la rehausse par exemple).

Les câbles optiques doivent dans tous les cas être maintenus sur l’ensemble des appuis (dispositifs de suspension adaptés, lorsque le câble n’est pas arrêté).

Les câbles seront posés suivant les tensions de pose préconisées par le constructeur en fonction des critères de température extérieure et des longueurs des portées.

Les câbles optiques installés ne doivent pas interférer en portée avec les nappes existantes et doivent rester organisés au niveau de chaque passage d’appui afin de limiter les frottements avec les armements existants ou les autres câbles déjà présents (par exemple lors de la descente vers un boîtier de raccordement ou lors du passage en transition aéro-souterraine).

6.2 Installation des câbles optiques

Opérations préalables à la pose d’un câble en aérien

La pose d’un câble aérien doit en principe être réalisée sans interruption. il faut donc avant de l’entreprendre procéder à toutes les opérations nécessaires pour que l’artère aérienne soit en état de recevoir le ou les câbles prévus.

Ces opérations sont les suivantes :
Consolidation ou remplacement. Les appuis jugés non utilisables en l'état lors de l'étude, ont été remplacés ou consolidés.

Au balisage du chantier afin de prévenir des risques liés aux interventions sur le domaine public ou privatif.

Sondage des poteaux. Toute intervention sur les poteaux est précédée d'un sondage effectué selon les règles décrites à l'article

Elagage. Les branches gênant la mise en place des câbles en risquant d'entrainer leur usure sont coupées

1. à l'armement des appuis de l'artère à l'aide d'un camion nacelle
2. à l'installation des équipements nécessaires au tirage ou déroulage des câbles avec des précautions d'usage du fait du positionnement des câbles optiques au-dessus de la nappe existante.
3. à la pose des câbles :

L'efficacité et la sécurité passent par le choix de la meilleure méthode de pose en fonction des circonstances et des lieux.
ANNEXE : CAHIER DES CHARGES APPUIS AERIENS

article 1 - DISPOSITIONS CONSTRUCTIVES POUR LA REALISATION DES ETUDES PAR L’OPERATEUR

1.1 Description de l’opération

L’opération consiste à effectuer un relevé complet de l’ensemble des appuis que l’opérateur envisage d’utiliser. A cette fin, l’Opérateur dispose d’une fiche d’appui ou d’un support digital qui récapitule l’ensemble des tâches à effectuer, de l’identification de l’appui jusqu’à son calcul de charge permettant de décider si la pose d’un câble optique est possible ou non.

1.2 Reconnaissance terrain

1.2.1 Environnement de l’appui

Après s’être assuré que l’appui appartenait bien par délégation au RIP, l’Opérateur vérifie son lieu d’implantation (domaine public ou privé) et les éventuels surplombs de domaine privé des câbles qui lui sont rattachés. Il appartient à l’Opérateur d’effectuer toutes les démarches utiles pour obtenir les autorisations nécessaires auprès des différents propriétaires pour la pose d’un câble.

L’Opérateur apprécie également la possibilité ou non d’intervenir sur l’appui à l’aide d’une nacelle et indique si des opérations d’élagage préalable de la végétation sont nécessaires pour la pose du câble.

L’élagage (y.c toutes les démarches en vue d’obtenir les autorisations préalables nécessaires) est à la charge de l’Opérateur. Toutes les précautions doivent être prises pour éviter tous dommages aux câbles existants.

1.2.2 Aspect sécurité de l’appui

L’opérateur doit vérifier que toutes les contraintes décrites dans les principes généraux du document d’ingénierie (annexe D3) sont respectées.

- Il s’agit en particulier de vérifier que les règles de voisinage avec les câbles électriques sont respectées au regard du futur câble optique à poser conformément aux arrêtés du 17 mai 2001 et du 26 avril 2002 dans leur dernière version.
- L’absence d’étiquettes jaunes ou oranges est également à vérifier ainsi que l’état de verticalité et de flambement du poteau conformément aux principes généraux décrits dans le document d’ingénierie (annexe D3).

Méthode pour déterminer le degré de flambement ou verticalité suivant l’orientation la plus défavorable:

Défaut de verticalité des appuis
Exemples ci-dessus d'un appui simple métallique incliné du côté tirage des câbles et d'un appui bois avec câbles en passage droit également incliné dans une zone d'exposition aux vents latéraux.

Dans ces deux cas l'appui s'incline du fait d'une évolution de la tenue mécanique du sol au niveau de son enca斯特rement. Sur un appui présentant un défaut de verticalité une étiquette jaune et une étiquette orange sont généralement présentes.

Défaut de flambement des appuis

Dans le cas du flambement (exemples ci-dessus) l'appui bois est soumis à une déformation permanente qui va lui faire perdre de son élasticité au fil du temps, le rendant plus vulnérable aux événements climatiques temporaires. On observe le plus souvent des variations de flèches/tensions avec des distances au sol parfois réduites, voir non-conformes. Les appuis métalliques sont quant à eux très peu sensibles au flambement.

Au-delà d'une certaine valeur d'inclinaison ou de flambement, les variations climatiques temporaires (vents violents, neige, givre...) risquent de créer des dommages irréversibles tant sur les appuis que sur le ou les câbles constituant l'artère. C'est pourquoi il convient de contrôler que l'appui se situe à un niveau d'inclinaison ou de flambement admissible avant toute nouvelle installation de câble.

La règle à respecter est la suivante :

Les poteaux qui présentent une distance supérieure de 20 cm (Appuis Aériens de 6 mètres) ou de 30 cm (Appuis Aériens de 7 ou 8 mètres) entre une génératrice extérieure du pied du poteau et un point matérialisé par la projection verticale de la tête du poteau au sol sont interdits d’usage.
Méthode simple proposée pour le contrôle dans les deux cas

<table>
<thead>
<tr>
<th>Depuis le sol : viser la tête du poteau, positionner un repère au sol et mesurer ensuite la distance entre ce repère et le bord extérieur du poteau.</th>
<th>Depuis le haut du poteau (nacelle) : mesure du faux aplomb à partir de la tête du poteau</th>
</tr>
</thead>
</table>

Les remplacements de poteaux bois situés dans un environnement revêtu béton, bitume, macadam, pavés doivent être effectués avec des poteaux métalliques. En cas de présence de réseau électrique aérien (nu ou isolé) au voisinage de l’artère pour des raisons de sécurité, l’Opérateur devra utiliser un poteau composite.

1.2.3 Réalisation des tests de l’appui :

Lors de l’étude, et avant toute intervention, l’Opérateur doit s’assurer de l’état du poteau concerné. L’Opérateur et ses prestataires doivent disposer de toutes les compétences nécessaires pour la réalisation du contrôle des poteaux de télécommunications.

Tout appui déclassé, au vu des critères ci-après, est interdit d’utilisation.

Contrôle des appuis bois

Avant l’intervention sur un appui bois, avec ou sans étiquette, pour obtenir des indications sur son état, il est nécessaire de procéder aux contrôles suivants :

- **examen visuel** : présence d’étiquettes (étiquette jaune = appui dangereux et interdit d’ascension et de pose de nouveaux câbles, étiquette orange= poteau à recaler), hauteur du clou de marquage indiquant la profondeur d’implantation, dégradations ou délitage affectant plus du quart du diamètre, fentes importantes (plus d’une demi hauteur ou plus d’un demi diamètre), trous traversant ou de gros diamètres (plus d’un demi diamètre de poteau), attaques de pourriture, attaques d’insectes…

En cas de présence de hauban, l’inspection visuelle doit concerner également la qualité du haubanage présent : Si celui-ci est détendu, l’Opérateur devra procéder à sa remise en tension avant toute pose de nouveau câble. Si celui-ci est détérioré (brins du câble rompus), l’Opérateur devra procéder à son remplacement.

- **examen par percussion** : test au son de l’appui par des coups secs effectués avec une massette à partir de l’enca斯特rement et sur une hauteur de 1,50 m environ (un son mat traduit la présence de pourriture).

- **examen à la pointe carrée** : test d’enfoncement d’une pointe carrée au niveau du collet et sur tout le pourtour de l’appui en dégageant bien sa base (la pointe s’enfonce facilement en cas de pourriture au collet). La même opération est à conduire sur la tête de poteau.

- **examen de résistance** : test de la stabilité et de la solidité de l’appui effectué à la main par trois fortes poussées et des tractions perpendiculaires à l’artère (une chute de morceaux de tête peut mettre en évidence une pourriture en tête)…

Si l’appui est jugé bon, il est nécessaire de continuer à observer l’état de l’appui en cours d’ascension et de contrôler la tête de l’appui si nécessaire.
L’intervention avec un élévateur n’exclut pas le contrôle de l’appui.

Exemple de poteau bois non utilisable : étiquette jaune, pourriture, fissure ou chocs d’épavese

Contrôle des appuis métalliques

- **examen visuel** : un contrôle visuel de l'ensemble du fut doit être effectué à 3 m de distance et sur un tour complet. Vérifier la présence d’étiquettes (étiquette jaune = appui dangereux et interdit d’ascension et de pose de nouveaux câbles, étiquette orange = poteau à recaler). Vérifier les différents marquages indiquant la profondeur d’implantation, attaque grave de rouille à l’encastrement, blessures ou fissures traversantes de plus de 15 cm ou autres dégradations graves (arêtes pliées, trous, chocs multiples…).

En cas de présence de hauban, l’inspection visuelle doit concerner également la qualité du haubanage présent : Si celui-ci est détendu, l’Opérateur devra procéder à sa remise en tension avant toute pose de nouveau câble. Si celui-ci est détérioré (brins du câble rompus), l’Opérateur devra procéder à son remplacement.

- **examen de résistance** : test de la stabilité et de la solidité de l’appui effectué à la main par trois fortes poussées et des tractions perpendiculaires à l’artère.

- **examen par percussion** : le contrôleur doit dégager le collet sur 5 cm de profondeur autour du poteau sur tout son périmètre et doit frapper le poteau à l’aide d’un marteau au niveau du collet et sur toute surface présentant des traces d’oxydation.

Exemple de poteau métal non utilisable : étiquette jaune, chocs d’épavese, trace de rouille

1.2.4 Vérification de l’encombrement de l’appui

L’Opérateur doit vérifier que toutes les contraintes décrites dans les principes généraux du document d’ingénierie (annexe D3) sont respectées. Il s’agit en particulier de vérifier d’une part que l’encombrement de la tête de poteau permet l’implantation d’un armement avec ou sans rehausse et d’autre part, que le positionnement d’un point de branchement optique ou d’une protection d’épissure optique est possible sur le poteau.

Exemples d’implantation de rehausse non possible
État de l’armement, inclinaison de la traverse et tête de poteau fissurée...

1.3 Le calcul de charges

Dès lors que la phase « reconnaissance terrain » aboutit à une appréciation favorable pour l’utilisation d’un appui, l’Opérateur peut procéder au relevé des données lui permettant d’effectuer le calcul de charges.

1.3.1 Rajout du ou des câbles optiques pour le calcul de charges

L’Opérateur peut procéder à la simulation du rajout de ses câbles multifibres et ses points de branchements.

1.3.2 Envoi des données terrain par l’Opérateur au guichet unique de traitement des commandes

Lorsque le résultat des tests ou du calcul de charge indiquent une impossibilité d’utiliser l’appui, l’Opérateur peut proposer sur la fiche d’appui des solutions de consolidation ou de remplacement.

La fiche d’appui est ensuite envoyée au guichet de traitement des commandes du RIP.

article 2 - DISPOSITIONS CONSTRUCTIVES ET CONDITIONS TECHNIQUES POUR LA POSE DE CABLES OPTIQUES SUR LES ARTERES AERIENNES

2.1 Description des opérations

Les opérations consistent à la pose de câble optique selon les Règles d’ingénierie définies dans l’annexe D3. Suivant le cas de figure, l’Opérateur pourra déployer son câble en tête de poteau sur l’armement présent ou bien préparer les appuis en plaçant en tête de ceux-ci un armement dédié afin de pouvoir recevoir le ou les câbles à fibres optiques nécessaires.

3 cas se présentent :

- Cas 1 : l’appui présente un espace disponible en extrémité haute ou même niveau permettant l’installation d’un armement standard ou bien présente un armement déjà installé et totalement libre en position haute : l’Opérateur peut donc utiliser l’espace ou l’armement disponible à partir des éléments décrits dans le chapitre 9 (matériel).
• **Cas 2** : l’appui est occupé par des armements et des câbles en extrémité mais il est possible au vu de son encombrement et de son état de réaliser une extension en sur élévation. Cette opération est réalisée grâce à un matériel d’armement spécifique appelé « rehausse » qui sera combiné avec des éléments standards selon des configurations décrites ci-après.

• **Cas 3** : l’appui permet selon les Règles d’ingénieries définies dans l’annexe D3 la pose en nappe existante de câble optique sur l’armement présent sans décrochage ou réaménagement du réseau.

L’opération de pose du ou des câbles à fibres optiques peut ensuite être conduite sur l’armement existant ou dédié grâce à des systèmes d’ancrage ou de suspension adaptés. Lors de ces opérations de pose de câbles l’Opérateur doit prendre toutes les précautions nécessaires pour ne pas créer de dommages aux installations existantes et en assume toutes les conséquences.

2.2 Conditions techniques pour l’installation des armements

Conformément aux préconisations de l’annexe D3, la pose d’un nouveau câble optique par un Opérateur n’est pas autorisée dans les nappes existantes sauf exception. Par conséquent, le premier Opérateur intervenant sur une Artère Aérienne devra procéder à l’installation d’un armement spécifique permettant l’installation des câbles optiques.

Cette installation doit s’effectuer sans aucun réaménagement de la configuration existante (câbles, armements, pinces, boîtiers, goulottes…).

Aucune dépose de câbles de boîtiers ou d’armements existants ne peut être effectuée sans accord préalable du RIP.

La rehausse est une pièce fixée en tête d’appui. Cette rehausse permet de positionner un armement en nappe haute au-dessus des nappes existantes. Ce procédé permet de créer un niveau d’armement supplémentaire. La rehausse permet d’équiper les appuis bois, métal et fibre.

Il existe 3 modèles de rehausse :

<table>
<thead>
<tr>
<th>Modèle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELENCO (Refo)</td>
<td>Modèle de rehausse (Refo) remplacé par le modèle (Refo 2).</td>
</tr>
<tr>
<td>TELENCO (Refo 2)</td>
<td>Elément principal rehausse</td>
</tr>
<tr>
<td>SM-CI (RPT 15c)</td>
<td>Elément de fixation optionnel bride</td>
</tr>
</tbody>
</table>

(Images issues des modes opératoires Telenco et SM-CI)
La rehausse est positionnée au minimum à 10 cm au-dessus de la nappe existante la plus haute (idéalement 15 cm) et au maximum à 15 cm au-dessus de la tête de poteau (base du cône ou du biseau pour poteau bois).

La rehausse doit être fixée en 2 points espacés au minimum de 10 cm, cependant pour assurer une meilleure tenue mécanique un écartement le plus grand possible est recommandé.

Ces points de fixation se font en fonction de la configuration en tête d’appui :

- La fixation sur appui bois est réalisée en priorité par 2 boulons traversant ou 1 boulon traversant et un tire-fond en partie basse.
- La fixation sur appui métal est réalisée par feuillard ou boulon traversant si l’appui métal est pré-percé.

2 types d’installation possibles :

- Installation recommandée, en opposition de l’armement existant et dans l’axe principal
- Installation en latéral sur l’un des côtés en fonction de l’espace disponible

Les armements utilisés sur la rehausse sont généralement des traverses (5/14) ou (5/15).

Installation rehausse (Refo 2) sur poteau bois et métal

(Images issues du mode opératoire Telenco)

Matériels de fixation complémentaires à la rehausse

Montage sur poteau bois en position opposée ou latérale

Montage sur poteau métal en position opposée ou latérale
2.2.1 Exemple de différentes configurations d’armements avec rehausse dédiée à la pose des câbles optiques

Les possibilités d’armement sont liées à l’encombrement mais aussi à la nature de l’appui (bois ou métallique).

Le choix de l’armement doit être fait de façon à préserver au mieux l’intégrité de l’appui.

Aucun percement n’est autorisé :

- en tête sur un appui bois présentant une fissuration, un flambement, ou présentant un état visuel dégradé.
- sur appui métallique.

Sur les appuis métalliques, l'utilisation du cerclage métallique est quasi systématique sauf dans le cas de poteaux pré-percés offrant une possibilité de boulonnage.

Exemples de possibilités d’armement de la rehausse sur appuis bois et métalliques :

Réutilisation d’un point de fixation présent, typiquement le boulon de traverse existant. Celui-ci doit être en état correct et ne pas présenter de jeu par rapport au poteau. Un resserrage préalable de l’écrou existant est à effectuer avec la reprise éventuelle d’horizontalité de la traverse autant que faire se peut.

Sur poteau bois, tous nouveaux percements du poteau pour implantation d’un boulon traversant doit respecter une distance minimale de 5 cm de la base du cône et de tous percements existants.

Fixation possible en bas de rehausse par boulon traversant ou tirefond à tête carrée (12 x 80mm, à visser-type1/21 ou 13 x 100mm, à visser-type 1/23)

Sur poteau métal, fixation par 2 cerclages ou boulon traversant si la tête de poteau est pré-percée.

En règle générale, il conviendra de privilégier les traverses (5/14) ou (5/15) en haut de rehausse pour la pose du réseau optique. Pour les cas spécifiques de déport par rapport à l’axe de la rehausse pour éviter un surplomb et un frottement des câbles avec un obstacle (appui commun, arbre…), l’utilisation de la traverse (5/15) est recommandée.
Exemple de rehausse refo (ancien modèle) implantée en face opposée à l’armement sur poteau métal avec 1 cerclage et sur boulon tête de poteau fixée avec un écrou. Montage d’une traverse 5/14 avec 1 boulon. 14 x 25 mm.

Exemple de rehausse refo (ancien modèle) implantée latéralement sur poteau bois avec 2 boulons traversant de 14 x 225 mm et plaquettes demi-lune montées après perçage du poteau. Montage d’une traverse 5/14 avec entretoise de 30 mm et boulon de 14 x 60 mm.

Exemple de rehausse refo 2 implantée latéralement avec deux boulons traversant de 14 x 225 mm et plaquettes demi-lune montées après perçage du poteau. Utilisation de brides pour passage du collier fixée avec 2 boulons 14 x 60 mm sur la rehausse. Montage d’une traverse 5/15 avec 2 boulons de 14 x 25 mm.

Exemple de rehausse refo 2 implantée latéralement avec deux boulons traversant de 14 x 225 mm et plaquettes demi-lune montées après perçage du poteau. Utilisation de plaque demi-lune + écrou pour passage de collier. Montage d’une traverse 5/14 avec 2 boulons de 14 x 25 mm.
2.2.2 Cas particuliers des poteaux déjà équipés de rehausse

Certains poteaux sont déjà équipés de rehausse (autres que celles décrites dans le présent document), notamment dans le cadre de traversées de route ou de passages d'obstacles divers.

Différents types de rehausse peuvent être rencontrés avec des qualités de fixation variables. Les Opérateurs peuvent utiliser ces rehausses uniquement dans certains cas et en respectant les conditions suivantes :

- Le calcul de charge après ajout de la fibre permet l’utilisation de l’appui
- La rehausse existante autorise l’installation d’un armement supplémentaire
- Seuls des câbles de branchements clients sont prévus sur cette rehausse
- La vérification de la qualité de la fixation de la rehausse montre que le rajout de câbles de branchements optiques est compatible
- La rehausse existante et de type tubulaire (l’utilisation de rehausse type « traverse verticale » est interdite).

En cas d’impossibilité d’utiliser la rehausse existante, l’Opérateur peut envisager l’installation d’une rehausse supplémentaire de type tubulaire montée sur 2 étriers.

En cas de calcul de charge négatif, l’Opérateur peut procéder au remplacement de l’appui existant en choisissant un appui de taille supérieure lorsque c’est possible.

2.2.3 Cas particuliers des poteaux permettant la pose d’un armement en tête de poteau

Pour un appui dédié aux câbles multipaires et multifibres, l’Opérateur a la possibilité d’utiliser la nappe existante. L’installation d’un armement en tête de poteau pour la pose d’un câble optique doit respecter les Règles d’ingénieries définies dans l’annexe D3. Il faut que l’espace en tête de poteau soit suffisant pour garantir la bonne tenue mécanique de l’armement. La pose d’un nouvel armement se fera par priorité au-dessus de l’armement existant mais peut selon le cas de figure se faire au même niveau.
Pour la fixation d’une traverse en tête de poteau l’Opérateur doit toujours respecter la distance minimale à ne pas dépasser par rapport à la base de la tête de l’appui. La pose d’un câble multifibre sur le nouvel armement doit garantir l’espace suffisant de 10 cm horizontal et vertical entre les réseaux.

- Sur poteaux bois : une traverse (5/14) ou (5/15) fixée au poteau par l’intermédiaire d’une semelle (5/16). L’axe des trous de la traverse est situé à 5 cm de la base du cône. L’armement est fixé par un boulon traversant de 14 mm sur la partie supérieure et arrêté en rotation par un tire-fond à visser 1/21 ou un deuxième boulon traversant sur la partie inférieure.

- Sur poteaux métalliques : on fixe une semelle (5/17) (semelle alpax) ou console universelle UPB par 2 cerclages en feuillard. L’extrémité supérieure de ces armements est située à environ 1 cm du sommet du poteau afin de garantir 3 cm entre l’axe des trous de la traverse (5/15) et le sommet du poteau.

Exemple d’installation d’une traverse en tête de poteau permettant de respecter les conditions de pose de l’armement et garantissant 10 cm d’écart entre les réseaux. Le percement pour la fixation de la semelle 5/16 doit se faire sans retrait des armements déjà présent.

Remarques : la console traverse universelle s’installe directement sur appui bois et métal selon le même principe de pose au sommet du poteau. La traverse 5/15 peut être installée sur la semelle 5/16 ou 5/17.

Exemple d’installation d’un armement (console universelle UPB) sur la face libre opposé aux armements du réseau (pince 30/34) permettant de respecter les conditions de pose de l’armement et garantissant 10 cm d’écart entre les réseaux.
2.3 Conditions techniques pour la pose des câbles optiques

2.3.1 Installation des câbles optiques

Opérations préalables à la pose d’un câble en aérien

- Méthode par déroulement

Le touret de câble à dérouler est placé sur un engin dérouleur tracté par le véhicule. Le câble est immédiatement placé sur chaque appui dans les poulies de déroulement. Cette méthode est la plus rapide et la plus sûre, car elle présente les avantages suivants :

Le câble ne subit que peu d’effort de traction

Il est placé immédiatement sur appui

On peut effectuer autant de réglages qu’il est nécessaire sans avoir déroulé » la totalité du touret.

Le câble est placé dans un dispositif d’arrêt et on accroche l’ensemble sur l’armement de l’appui de départ. On tracte ensuite la brouette jusqu’à une dizaine de mètres au-delà de l’appui suivant. Le câble est alors placé dans la bancelle, laquelle est accrochée à l’armement de l’appui. On tire alors le câble à la main pour obtenir la tension voulue. Le réglage se fait au dynamomètre pour le premier câble, les autres sont ensuite réglés au parallélisme. On procède ainsi de portée en portée, aux traversées de route ou dans les angles, on utilise 2 dispositifs d’arrêt. Après la pose une vérification est effectuée suivant les

Le touret est placé sur un engin dérouleur tracté par un véhicule.

Le câble est immédiatement placé sur chaque appui sur des galets ou poulies disposées au fur et à mesure de l’avancement.

Avantages

- Méthode rapide et sûre car le câble ne subit que peu d’efforts de traction, il peut être placé immédiatement sur les appuis.
- Il est aussi possible d’effectuer tous les réglages sans avoir déroulé la totalité du câble de l’artère.
- Le travail est facilité sur les câbles à installer côté route.

Inconvénients

- Cette méthode n’est utilisable qu’en l’absence d’obstacle (arbres poteaux…) entre la route et l’appui.
- Le travail est facilité sur les câbles à installer côté route sur l’appui. Pour les installations côté champ, Il ne faut pas que la nappe existante soit trop importante car le câble doit être passé par-dessus l’appui pour être mis en place.
Câble en déroulage, arrêt et suspension possible au fur et à mesure de l’avancée de la bobine

- **Méthode par aiguillage**

On emploie cette méthode que lorsque la précédente ne peut être utilisée par suite d'obstacles divers.

Le câble est tiré sur un tronçon en partant par exemple d'une transition aéro souterraine ou d'une traversée de route vers un point de branchement ou de raccordement.

L’opération nécessite l'installation d’une ou plusieurs poulies de guidage sur les appuis successifs préalablement armés avec les dispositifs de rehausse.

Le déroulage du câble optique sur l’artère est effectué à partir d’un touret lui-même sur remorque ou support.

Le câble est dévidé par le haut du touret et nécessite une surveillance minimale entre les appuis (retour de mou au sol entres appuis, gestion du dévidage…).

Un dispositif de contrôle de la tension (jauge, peson…) est placé dans la chaîne de tirage afin de contrôler la tension pendant le dévidage.

La mise en tension du câble est effectuée à partir d’un point fixe en extrémité de l’artère ou par tronçon à partir des appuis d’arrêts renforcés temporairement si besoin. La relative légèreté des câbles optiques peut permettre une mise en tension manuelle ou au moyen d’un système de tirage mécanique de type treuil (suivant les longueurs mises en œuvre).

Le câble est ensuite relevé et fixé aux armements par l’intermédiaire de dispositif d’ancrage ou de suspension suivant la configuration de l’artère.

Le réglage définitif des tensions de pose et des flèches est effectué successivement au niveau de chaque arrêt de câble.

Avantages :

- L’extrémité du câble pouvant être libérée facilement pendant le tirage, il est aisé de passer derrière un obstacle présent entre la route et l’artère.
- Le faible poids des câbles optiques facilite les passages sur les appuis.
- Facilité d’installation même côté champ sur artères encombrées.
- Croisement ou franchissement des branchements en traversée de route simplifié.

Inconvénients :

- Le câble est sollicité en traction pendant le dévidage (à surveiller).
- Plus de points actifs et de surveillance sur le chantier dès que la longueur mise en œuvre augmente.
- Nécessité d’aller au bout (jusqu’au point de raccordement) et risque d’avoir à dépoter du câble si la traction devient trop importante.
Câble en tirage «aiguillage» sur les appuis

Méthode mixte

Il peut être intéressant d’avoir recours à une méthode mixte. Une partie du câble est tirée puis l’autre est déroulée. Cette méthode est avantageuse quand les obstacles ne sont pas trop nombreux ou inégalement répartis. Il convient alors de faire le choix judicieux de l’emplacement du touret.

Les deux techniques de pose peuvent être utilisées de façon combinée sur une même artère si les obstacles ne sont pas trop nombreux ou trop inégalement répartis. Dans ce cas, il convient de choisir de façon judicieuse l’emplacement du touret.

2.3.2 Mise en tension des câbles sur une artère ou sur des tronçons

Palan accroché à un point fixe au sol, en pied ou en tête de poteau.

Chaîne de mise en tension devant comporter un tendeur à mâchoires auto-serrantes, un palan ou système de mouflage et un dispositif indicateur de tension (dynamomètre, jauge, peson...).
En agglomération il n’est pas toujours possible de procéder aux opérations de mise en tension à partir du sol du fait du dégagement. Cette opération peut alors être effectuée en tête ou en pied d’appui.
Attention : Lors de cette opération, il convient de respecter les recommandations suivantes:

- Renforcer au moins provisoirement le dernier appui qui fait office de renvoi via une poulie placée en tête.
- Respecter également la courbure minimale du câble (poulie de diamètre adapté) et l’effort de traction admissible sur celui-ci (données constructeur).
- Utiliser un dispositif adapté pour effectuer la prise sur le câble : Idéalement un tendeur à mâchoires adaptées au profil du câble et suffisamment longues pour répartir l’effort de compression ou à défaut un dispositif d’ancrage adapté.

2.3.3 Réglage et transfert des câbles au niveau de chaque arrêt

Mise en œuvre des "gouttes d’eau ou chapeau de gendarmes" au niveau des arrêts.

Hormis en tête ou en fin de ligne, sur chaque appui où le câble sera arrêté, on laissera entre les deux dispositifs de fixation une sur-longueur de câble qui de par sa forme et sa position sera appelé "goutte d’eau" ou "chapeau de gendarme". Son rôle est d’éviter l’usure du câble sur l’appui ou son armement.

Afin d’avoir des sur-longueurs homogènes, on procèdera comme suit :

- Mettre le câble à la tension préconisée.
- Arrêter un côté à l’aide d’un dispositif d’ancrage
- Prendre une longueur suffisante en fonction du diamètre du câble et de sa rigidité (L = 0,90 m maximum) à partir de l’arrière du dispositif d’ancrage en place et prendre un repère.
- Positionner l’arrière du second dispositif d’ancrage sur le repère et fixer ce dernier sur le câble.
- Rapprocher le câble et le dispositif d’ancrage de l’armement de l’appui (manuellement ou à l’aide d’un palan + jauge + tendeur).
- Arrêter le dispositif d’ancrage.

Éviter les frottements avec les poteaux ou les arancements existants. Respecter le parallélisme des câbles et éviter les croisements en portée. Laisser toujours les extrémités libres des traverses pour le raccordement client.
En général, le déploiement des câbles optiques en aérien s’effectue avec des dispositifs d’ancrage ou de suspension. L’utilisation de dispositif de suspension est adaptée pour des artères rectilignes avec des portées équilibrées.

Par ailleurs, l’installation des câbles de réseaux multifibre est à privilégier au plus près de l’axe de l’appui tandis que les câbles de branchements clients sont plutôt à positionner en extrémité de traverse pour faciliter le raccordement. Pour faciliter le déploiement du réseau de raccordement optique client, les dispositifs d’ancrage et de suspension doivent être le plus compacts possible en adéquation avec le câble posé.

Les câbles de réseaux et de branchements installés sur les traverses doivent conserver la même position relative entre eux sur tout le parcours de l’artère, en évitant tous frottements ou croisements dans la nappe.

A titre d’exemple, il est préconisé d’espacer les dispositifs d’ancrage volumineux d’un trou sur les traverses 5/14 lorsqu’on installe plusieurs câbles. Sur la traverse 5/15 cette préconisation d’espacement n’est pas nécessaire du fait d’un entraxe plus grand entre chaque trou de la traverse.
Tension et contraintes de pose des câbles optiques

Les limitations de poids et diamètres sur les câbles optiques sont définis dans l’annexe D3, mais l’Opérateur garde le choix de son ou ses fournisseurs.

L’Opérateur aura la responsabilité de faire parvenir au RIP les caractéristiques exactes des nouveaux câbles à poser pour mise à jour de la base.

Les différents câbles optiques aériens existant sur le marché présentent d’importantes variations dans les structures, c’est pourquoi le tableau ci-dessous n’est donné qu’à titre indicatif :

<table>
<thead>
<tr>
<th>Nomenclature sur le RIP</th>
<th>Capacité du câble</th>
<th>Modularité du câble</th>
<th>Ø en (mm) extérieur du câble</th>
<th>Traction (daN)</th>
<th>Charge de rupture (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1047-1</td>
<td>12 à 36</td>
<td>12</td>
<td>≤ 13,5</td>
<td>400</td>
<td>16</td>
</tr>
<tr>
<td>L1047-2</td>
<td>48 à 72</td>
<td>12</td>
<td>≤ 15</td>
<td>400</td>
<td>18,5</td>
</tr>
<tr>
<td>L1048</td>
<td>84 à 144</td>
<td>12</td>
<td>≤ 16</td>
<td>500</td>
<td>23</td>
</tr>
<tr>
<td>L1092-1</td>
<td>12</td>
<td>12</td>
<td>6 ± 0,2</td>
<td>80</td>
<td>2,3</td>
</tr>
<tr>
<td>L1092-2</td>
<td>24 à 36</td>
<td>12</td>
<td>≤ 8,0</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>L1092-3</td>
<td>48 à 72</td>
<td>12</td>
<td>≤ 11,5</td>
<td>220</td>
<td>8,2</td>
</tr>
<tr>
<td>L1092-11</td>
<td>6</td>
<td>6</td>
<td>6 ± 0,2</td>
<td>80</td>
<td>2,3</td>
</tr>
<tr>
<td>L1092-12</td>
<td>12</td>
<td>6</td>
<td>≤ 8,0</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>L1092-13</td>
<td>18 à 36</td>
<td>6</td>
<td>≤ 9,5</td>
<td>170</td>
<td>5,9</td>
</tr>
<tr>
<td>L1092-14</td>
<td>42 à 72</td>
<td>6</td>
<td>≤ 13</td>
<td>270</td>
<td>9,4</td>
</tr>
<tr>
<td>L1092-15</td>
<td>78 à 144</td>
<td>6</td>
<td>≤ 15</td>
<td>320</td>
<td>20</td>
</tr>
<tr>
<td>L1083-1</td>
<td>1</td>
<td>1</td>
<td>≤ 6,2</td>
<td>80</td>
<td>4,4</td>
</tr>
<tr>
<td>L1083-4</td>
<td>4</td>
<td>4</td>
<td>≤ 6,2</td>
<td>80</td>
<td>4,4</td>
</tr>
<tr>
<td>L1084-1</td>
<td>1</td>
<td>1</td>
<td>≤ 5,2</td>
<td>80</td>
<td>4,1</td>
</tr>
<tr>
<td>L1084-4</td>
<td>4</td>
<td>4</td>
<td>≤ 5,2</td>
<td>80</td>
<td>4,1</td>
</tr>
</tbody>
</table>

TABLEAU DES TENSIONS DE REGLAJE POUR LA POSE DE FIBRE OPTIQUE

<table>
<thead>
<tr>
<th>Catégorie et type de câbles</th>
<th>Portée (m)</th>
<th>Tension max de réglage en daN suivant la température (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-10 °C</td>
</tr>
<tr>
<td>L1047-1</td>
<td>50</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>63</td>
</tr>
<tr>
<td>L1047-2</td>
<td>50</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>74</td>
</tr>
<tr>
<td>L1092-1</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>L1092-11</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>L1092-2</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>L1092-12</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>19</td>
</tr>
</tbody>
</table>
Il est conseillé d’établir par type de câble à installer une fiche de synthèse de ces caractéristiques mécaniques et des conditions de mise en œuvre avec tous les détails concernant le réglage des tensions de pose et flèches en fonction des portées et de la température.

Les valeurs de poids, de tension de pose, et de tensions exercées lors des conditions climatiques extrêmes sont indicatives et peuvent varier légèrement en fonction du fabricant.

Valeurs détaillées extraites de la fiche câble (à titre indicatif)

2.3.4 Installation des boîtiers optiques PEO sur un Appui

La pose d’un boîtier optique sur Appui doit respecter les règles de l’Annexe D3 et son volume est inférieur à 6 dm³.

La hauteur d’installation doit se situer entre 1,50 m et 4 m ou entre 2,20 m et 4 m selon les règles préconisées dans l’annexe D3.

L’écart entre 2 boîtiers positionné sur le même plan d’un appui doit être au moins de 30 cm.

Le boîtier peut être installé par feuillard directement ou être fixé à l’aide d’une bride 2/12 sur poteau bois ou métal.

L’installation d’une bride peut se faire par tirefond ou feuillard sur poteau bois et uniquement par feuillard sur poteau métal.

La goutte de pénétration dans le boîtier optique se fait par le bas et sa longueur doit respecter le rayon de courbure du câble posé. Elle ne doit pas constituer un love de descente de boîtier pour la soudure et sa longueur doit être de 30 cm maximum en dessous du boîtier.

<table>
<thead>
<tr>
<th>L1092-13</th>
<th>50</th>
<th>42</th>
<th>38</th>
<th>35</th>
<th>32</th>
<th>29</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>35</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1092-14</th>
<th>50</th>
<th>68</th>
<th>61</th>
<th>55</th>
<th>49</th>
<th>45</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>56</td>
<td>50</td>
<td>44</td>
<td>39</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>44</td>
<td>38</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1092-15</th>
<th>50</th>
<th>91</th>
<th>82</th>
<th>74</th>
<th>67</th>
<th>61</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>76</td>
<td>67</td>
<td>60</td>
<td>54</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1083-1</th>
<th>50</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>
2.3.5 Cheminements des câbles sur un Appui

La pose de câble optique le long d’un Appui doit respecter les règles de l’annexe D3. Une mise en œuvre de fixation et de protections des câbles sur appuis sera réalisée pour les transitions aéro-souterraine, et du boîtier optique vers la tête du poteau :

- mise en place d’une gaine de protection demi-lune PVC ou acier dédiée au passage du ou des câbles optiques
- maintien complémentaire du câble optique avec colliers de fixation au niveau des entrées et sorties des goulottes.
- utilisation du matériel décrit au chapitre 9 pour la fixation des câbles et des goulottes sur les appuis le RIP
- pose de la goulotte avec un cerclage feuillard sur poteau bois et métal ou avec des clous sur poteau bois.

2.3.6 Installation d’un système lovage sur un Appui

La pose d’un système de lovage de câble optique sur un Appui doit respecter les règles de l’annexe D3. Certaines configurations spécifiques d’artères peuvent nécessiter l’installation de loves derrière des boîtiers de façon à limiter l’effet pistonnage des câbles (mouvement relatif entre l’âme et la gaine du câble pouvant amener des contraintes sur les fibres optiques):

- Déploiement d’un câble aérien sur plus de 200 mètres entre deux boîtiers consécutifs (ou entre un boîtier et une transition aéro-souterraine)
- Déploiement d’un câble aérien en zone climatique de type G1 (givre) en présence d’un boîtier
Lorsqu’un Opérateur rencontre une telle situation et qu’il se situe dans les critères définis dans l’annexe D3, il a la possibilité de procéder à la mise en œuvre d’un dispositif de lovage en respectant les conditions techniques ci-après :

- Le dispositif de lovage doit être positionné à proximité ou derrière un boîtier (PEO, PA), Sur les appuis couple le dispositif de lovage sera toujours positionné sur le piédroit.
- Le dispositif de lovage ne peut pas comporter plus de 8 tours de câbles : 4 tours par câble pour une configuration comportant un câble entrant et un câble sortant
- Les largeurs et hauteurs du dispositif de lovage doivent rester respectivement inférieures à 300 mm et 500 mm pour les câbles dont le diamètre est inférieur à 13 mm.
- Les largeurs et hauteurs du dispositif de lovage doivent rester respectivement inférieures à 500 mm et 800 mm pour les câbles dont le diamètre est supérieur à 13 mm. Les dispositifs de lovage sur appuis non supports de boîtiers optiques sont interdits.
- Les dispositifs de lovage de câbles de branchement clients ne sont pas autorisés.
- La hauteur d’installation doit se situer entre 1,50 m et 4 m ou entre 2,20 m et 4 m selon les règles préconisées dans l’annexe D3.
- Sur les appuis couple le dispositif de lovage sera toujours positionné sur le piédroit.
2.3.7 Création et utilisation de transition aéro souterraine sur Appui

La création de nouvelles adductions pour câble optique sur un Appui doit respecter les règles de l’annexe D3.

L’ouvrage réalisé devra satisfaire aux normes techniques du domaine en vigueur, en ce qui concerne notamment :

- La démolition des revêtements et la réalisation des fouilles
- Les matériaux de construction (ciments, mortier, matériaux auto compactants…)
- Les matériaux de reconstitution de chaussée, de trottoir et d’accotement
- La qualité des tubes et dispositifs avertisseurs
- Le remblayage et le compactage

Les principales normes concernées sont : NF P 98-331, NF P 98-332, NF XP 98-333

Les adductions aéro-souterraine sont limitées à 2 fourreaux aux pieds des Appuis et sont utilisées pour 3 types de configuration.

- pour le raccordement client
- pour le raccordement du génie civil souterrain
- pour l’implantation d’une chambre ou d’une borne pavillonnaire au pied de l’appui

La création d’une transition aéro-souterraine sur un Appui est autorisée en l’absence de transition aéro-souterraine existante non saturée sur les poteaux distante de 5 portées (environ 200 m) de la transition demandée par l’opérateur, ou s’il existe une transition aéro-souterraine disponible sur d’autres ressources réseaux tiers dans un rayon de 200 m de la transition aéro-souterraine demandée par l’opérateur.

Cas 1 : Création d’adduction aéro-souterraine pour le raccordement à un génie civil, chambre ou borne pavillonnaire

Avant toute nouvelle création d’adductions sur un Appui, l’opérateur devra faire une commande d’accès avec une étude de calcul de charge dans la fiche de l’appui concerné. Après validation de la commande d’accès l’opérateur procédera à la réalisation des travaux selon l’ordre chronologique suivant :

- Les travaux seront réalisés sans désstabiliser l’appui. Une tranchée de minimum 30 cm de profondeur sera creusée au pied de l’appui avec une consolidation provisoire par hauban si nécessaire pendant la réalisation pour assurer la stabilité de l’appui.

- Pour le cas particulier des adductions sur des appuis callés (plaque, pierre, dalette béton), l’opérateur devra s’adapter et positionner les fourreaux de manière à ne pas désstabiliser l’appui.

- Au pied de l’appui, l’opérateur procédera à la pose de 2 fourreaux en PVC coudé à 45° de Ø maximum 42/45 mm.

- L’opérateur procédera pour les nouvelles adductions aéro souterraine selon le cas à la pose à une distance minimum de 0,5 m d’une chambre ou d’une borne pavillonnaire au pied de l’appui.

- La hauteur hors sol de transition aéro souterraine au pied de l’appui ne doit pas dépasser 20 cm.

- Pour le cas d’un fourreau restant libre, un obturateur type B Etuy sera installé.

- L’adduction sur appui couple se fait impérativement sur le pied droit.
Cas 2 : Création par l’opérateur d’adduction aéro souterraine pour le raccordement client optique

- On appliquera les mêmes principes que les travaux d’installation du cas 1 avec possibilité d’utilisation de fourreaux en PVC coudé à 45° de Ø minimum de 28/1.5 mm
- Pose en partie privative ou en limite de propriété d’un regard type citerneau ou boîtier mural pour la transition aéro souterraine client pour matérialiser la limite de la propriété privée.

article 3 - DISPOSITIONS CONSTRUCTIVES ET CONDITIONS TECHNIQUES POUR LE RECALAGE, LA REIMPLANTATION, LE REMPLACEMENT ET LA CONSOLIDATION DES APPUIS EXISTANTS

3.1 Description de l’opération

L’opération consiste à recaler, réimplanter, renforcer ou bien remplacer un appui que l’Opérateur souhaite utiliser.

Le recalage et/ou la réimplantation de l’appui est nécessaire lorsque celui-ci comporte une étiquette orange ou bien lorsqu’il a été constaté en défaut de verticalité lors de sa vérification.

Le renforcement ou le remplacement de l’appui est nécessaire lorsque celui-ci a été refusé par l’outil de calcul de charges (zone rouge après rajout du câble optique) ou comporte une étiquette jaune ou encore lorsque le poteau est déclaré mauvais après vérification.
L’Opérateur propose au RIP une solution parmi celles décrites dans le paragraphe suivant (cf. § 3.2). Le RIP vérifie l’adéquation de la solution proposée avec la configuration de l’artère en présence. Le choix définitif de la solution doit ensuite être validé par la collectivité, gestionnaire de voirie concernée.

Conformément aux dispositions prévues par le Contrat, les travaux de recalage, de réimplantation, de remplacement et de consolidation sont à la charge de l’Opérateur qui doit prendre toutes les dispositions nécessaires pour éviter tous dommages vis-à-vis des tiers et réseaux déjà installés.

Lors de travaux de recalage ou réimplantation, les étiquettes oranges présentes sur un appui sont déposées dès lors que les travaux ont été réalisés.

Lors de la pose d’un appui en remplacement, l’Opérateur doit poser une étiquette bleue sur le nouveau poteau à 1,60 m du sol. Le marquage de cette étiquette doit comporter uniquement le même numéro du poteau remplacé. L’étiquette est fixée par des clous galvanisés pour les poteaux bois et par du feuillard galvanisé homologué (10 mm x 0,40 mm) pour les poteaux métalliques.

Avant d’effectuer tous travaux, l’Opérateur doit avoir déposé les demandes de renseignements auprès du gestionnaire du domaine public routier et adressé aux concessionnaires concernés les demandes d’intention et de commencement de travaux (DICT). L’Opérateur doit par ailleurs avoir obtenu une autorisation de travaux auprès de la collectivité gestionnaire.

Tous les intervenants doivent disposer de toutes les habilitations nécessaires (travail en hauteur et voisinage électrique notamment) et maîtriser l’ensemble des techniques relatives aux lignes aériennes que ce soit pour la plantation des appuis ou la pose et dépose des câbles aériens, dans le respect des normes et décrets en vigueur pour le domaine.

Ces travaux constituent des opérations à risques importants. La nature des risques encourus au cours des différentes phases de travaux ainsi que les mesures à prendre doivent être rigoureusement décrites dans le plan de prévention établi par l’Opérateur.

3.2 Conditions techniques de recalage, de réimplantation, de renforcement ou de remplacement d’un appui existant

Seules les solutions de haubanage, de mise en place d’une jambe de force ou d’ancrage d’un appui couple sont possibles en ce qui concerne le renforcement d’un appui existant.

3.2.1 Le recalage et/ou la réimplantation d’un appui existant

Une étiquette rectangulaire de couleur orange identifie un appui à recaler ou à replanter. Un défaut de verticalité constaté lors de la vérification d’un appui ne comportant pas d’étiquette orange conduit également à un recalage et/ou une réimplantation.

Pour réaliser un redressement d’appui (simple, moisé, couple), l’Opérateur effectue une fouille au pied de celui-ci. Elle peut aller jusqu’à la base du (ou des) poteau(x), pour qu’il(s) ne subisse(nt) aucune contrainte lors du redressement. Il le cale après l’avoir mis d’aplomb avec une tolérance de ±10 cm sur la hauteur totale.

Lors de cette opération, aucun craquement de l’appui (si bois) ne doit être perçu.

Cette opération délicate ne peut être réalisée que par une société spécialisée dans le domaine de la plantation des appuis de télécommunications.

3.2.2 Le renforcement d’un appui existant

- **Mise en place d’un haubanage**

Le haubanage sera préconisé lorsque l’application de calcul de charge propose cette solution et que l’environnement de l’appui autorise l’ancrage d’un hauban sans aucune gêne pour la circulation des riverains.
Le point de fixation du hauban doit se situer entre 40 et 60 cm du sommet du poteau. L'angle formé par le poteau et le hauban doit être compris entre 30 et 45°.

L'ancrage se réalise avec le matériel préconisé par le RIP. Le dispositif de tension, se trouve dans la partie haute du hauban.

Les appuis haubanés doivent être implantés de manière à ce que leur sens de tirage maximal coïncide avec la résultante des efforts.

Pour qu'un appui haubané ait une bonne résistance mécanique et ne subisse pas de déformation il faut que le hauban soit tendu et que le poteau ne s'enfonce pas.

L'angle formé par le poteau et le hauban doit être le plus grand possible et au moins à 30°.

Le point de fixation du hauban doit se situer le plus près possible du point d’application des efforts à supporter.

La tige d’ancrage doit être correctement enfouie pour ne pas dépasser de plus de 20 cm au-dessus du sol.

La mise en place d’un hauban sur des appuis moisés est autorisée dans le cadre de la consolidation des poteaux. Le calcul de charge est équivalent à un poteau simple haubané.
Mise en place d'une jambe de force

Une jambe de force sera préconisée lorsque l'application de calcul de charge propose cette solution et que l'environnement de l'appui autorise la jambe de force sans aucune gêne pour la circulation des riverains. Il s'agit d'assembler le poteau existant (piédroit) avec un autre poteau (jambe de force) formant un appui couple. Cet assemblage est réalisé à l'aide d'une entretoise variable fixée par cerclage pour les poteaux métalliques et par boulon avec une entretoise fixe (20/4 ou/et 20/5) pour les poteaux bois.

La mise en place d'une jambe de force sur un poteau simple déjà implanté se fait à l'aide d'une entretoise fixe sur poteau bois ou variable sur poteau métal dont l'angle est ajustable en fonction du positionnement de la jambe de force.

Le choix de la jambe de force doit être de même nature et hauteur que le poteau à renforcer sauf en présence d'un talus ou d'un devers nécessitant une jambe de force de hauteur différente. La mixité entre bois et métal pour les appuis couples est interdite.

Quel que soit le mode d’assemblage, l’appui couple peut être construit de 2 manières, la jambe de force pouvant travailler soit à la compression, soit à l’arrachement. La résistance à un effort horizontal dans le plan du couple est la même dans les 2 sens.

La jambe de force est implantée :
- En alignement droit, perpendiculaire à la direction des câbles.
- En courbe, dans le plan de la bissectrice de l’angle formé par les 2 portées adjacentes.
- En tête de ligne, dans le sens de la ligne.

La préparation de la jambe de force comporte les opérations suivantes :

Sur poteau bois
- L'assemblage exige une bonne précision dans les percements, ces cotes sont indiquées sur les schémas couple bois.
- Raccourcissement de la jambe de force à la longueur nécessaire par coupe de la tête de poteau. Interdiction de couper la base de la jambe de force.
- Creusement de la fouille destinée à recevoir la jambe de force.
- Percement pour le passage du boulon de tête suivant un angle d'environ 78° par rapport à l'axe de la jambe de force.
- Percement pour les boulons d'entretoise 20/4 perpendiculairement à l'axe de la jambe de force.
- Quand l'entretoise 20/5 est nécessaire, il est préférable de la poser sur l'appui construit.

<table>
<thead>
<tr>
<th>Hauteur du pied droit</th>
<th>D (m)</th>
<th>L (m)</th>
<th>E (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1,30</td>
<td>0,45</td>
<td>1,00</td>
</tr>
<tr>
<td>7</td>
<td>1,40</td>
<td>0,50</td>
<td>1,10</td>
</tr>
<tr>
<td>8</td>
<td>1,60</td>
<td>0,55</td>
<td>1,20</td>
</tr>
</tbody>
</table>

La fouille de la jambe de force à une section rectangulaire.

En fonction de la hauteur du piédroit :
- La distance entre les axes du piédroit et la jambe de force est (D).
- La longueur de celle destinée à la jambe de force est (L).
- L’écartement des faces intérieures des poteaux au niveau du sol est (E).
<table>
<thead>
<tr>
<th>Entretoise fixe couple bois hauteur des poteaux (m)</th>
<th>Ecartement d’axe en axe au niveau du sol (m)</th>
<th>Cas d’utilisation</th>
<th>Entretoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1,30</td>
<td>Dans tous les cas</td>
<td>20/4</td>
</tr>
<tr>
<td>7</td>
<td>1,40</td>
<td>Dans tous les cas</td>
<td>20/4</td>
</tr>
<tr>
<td>8</td>
<td>1,60</td>
<td>Alignement droit</td>
<td>20/4</td>
</tr>
<tr>
<td>8</td>
<td>1,60</td>
<td>En courbe et avec un effort de tirage supérieur à 500 daN</td>
<td>20/4 + 20/5</td>
</tr>
</tbody>
</table>

Couple bois 6, 7 et 8 m

Couple bois 8 m en courbe et avec une effort de tirage supérieur à 500 daN
Cas particulier des appuis bois moisés avec jambe de force ou un hauban :

L’appui résultant d’un moisé avec jambe de force sera considéré comme un appui couple bois ancré.

L’appui résultant d’un moisé avec un hauban sera considéré comme un appui couple bois ancré.

Sur poteau métallique

- Fixation de l’entretoise sur la jambe de force.
- Creusement de la fouille en respectant les intervalles des axes des poteaux. L’écartement des axes des poteaux au sol peut varier suivant l’emprise disponible sachant qu’un appui couple métallique est plus solide si l’écartement des poteaux est grand.

- Présentation de la jambe de force pour fixer l’entretoise sur le piédroit.
- La demi-entretoise est démontée et fixée sur le piédroit.
- Assemblage des 2 demi-entretoises et damage de la jambe de force.

<table>
<thead>
<tr>
<th>Entretoise variable couple métallique</th>
<th>Ecartement minimal au niveau du sol (m)</th>
<th>Ecartement maximal au niveau du sol (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hauteur des poteaux (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,12</td>
<td>1,82</td>
</tr>
<tr>
<td>7</td>
<td>1,25</td>
<td>2,05</td>
</tr>
<tr>
<td>8</td>
<td>1,40</td>
<td>2,40</td>
</tr>
</tbody>
</table>

- Mise en place d’un ancrage sur un appui couple

Un ancrage sur un appui couple sera préconisé lorsque l’application de calcul de charge propose cette solution et que l’environnement de l’appui autorise l’ancrage d’un appui couple sans aucune gêne pour la circulation des riverains.
Lorsqu'un *appui couple bois ou métal est insuffisant*, il est possible de faire un ancrage pour augmenter sa résistance à la rupture. On peut ancrer le piédroit ou la jambe de force de l’appui couple ou les deux pour renforcer l’appui selon son positionnement dans l’artère (tête de ligne ou en passage).

Le positionnement de l’ancrage de pied résulte d’un compromis entre la position de la tige qui doit être le plus possible parallèle au poteau et celle de l’ancre qui doit être placée dans une fouille indépendante et éloignée de celle du poteau.

![Ancrage appui couple bois](image1)

![Ancrage appui couple métal](image2)

3.2.3 Le remplacement d’un appui existant

Le remplacement d’un appui existant sera préconisé lorsque l’application de calcul de charge propose cette solution et lorsque les solutions de consolidations ne sont pas possibles ou lorsque l’appui comporte une étiquette triangulaire jaune « montée interdite » ou encore lorsque le poteau est déclaré mauvais après vérification.

Les poteaux bois pris dans du béton, bitume et pavés sur l’ensemble de leur périphérie ne permettent pas de procéder à l’ensemble des contrôles d’usage avant ascension ; à ce titre, l’ascension de ces appuis est interdite autrement que par l’usage de plateforme élévatrice mobile de personnel (PEMP).
Les appuis bois en milieu BMP (Béton / Macadam / Pavé) seront remplacés en priorité par des poteaux métalliques, sauf en cas de présence de réseau électrique aérien au voisinage de l’artère du RIP pour des raisons de sécurité.

Le remplacement d’appui est réalisé en fonction de la configuration de l’artère et du terrain. Avant remplacement, toute situation jugée incohérente et/ou dangereuse sera signalée au RIP. Les appuis neufs sont mis soit au même emplacement, soit dans un périmètre proche permettant le raccrochage des câbles à l’identique.

Le remblai s’effectue avec la terre d’origine expurgée de toutes matières organiques ou de la grave naturelle calibrée avec apport éventuel de terre si nécessaire.

Le remplacement d’appui doit généralement permettre l’installation du réseau optique au-dessus du réseau existant sans avoir recours à la pose d’une rehausse et ce, tout en respectant les hauteurs par rapport au sol.

Le remplacement doit conduire à une installation strictement conforme aux règles d’ingénierie, quel que soit l’état antérieur de l’appui. Si nécessaire, l’Opérateur doit corriger la profondeur d’implantation de l’appui en conformité avec les règles d’implantation.

Lorsque la hauteur au sol est suffisante, les armements sont repositionnés de façon à libérer la tête d’appui pour permettre le passage de la nappe optique avec un armement standard sans ajout de rehausse.

La profondeur d’implantation des poteaux est donnée par le tableau ci-après :

<table>
<thead>
<tr>
<th>Type d’appui</th>
<th>Cas général</th>
<th>En talus et extérieur de fossé (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simple</td>
<td>Simple, Moisé, Pied droit du couple et jambe de force</td>
</tr>
<tr>
<td></td>
<td>Pied droit couple et jambe de force</td>
<td>Pied droite du couple et jambe de force</td>
</tr>
<tr>
<td>Longueur des poteaux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 m</td>
<td>1,30 m</td>
<td>1,45 m</td>
</tr>
<tr>
<td>7 m</td>
<td>1,40 m</td>
<td>1,55 m</td>
</tr>
<tr>
<td>8 m</td>
<td>1,50 m</td>
<td>1,65 m</td>
</tr>
<tr>
<td>10 m</td>
<td>1,75 m</td>
<td>1,90 m</td>
</tr>
</tbody>
</table>

(1) voir schéma : exemple appui moisé
(2) voir schéma : exemple d’appui talus et/ou extérieur au fossé pour les poteaux simples

Les profondeurs sont augmentées de 15 cm pour les appuis moisés ainsi que pour les appuis implantés dans les talus ou sur le bord extérieur des fossés (profondeur mesurée à partir du niveau du sol, côté aval).

Une augmentation de la profondeur d’implantation pourra être également envisagée pour compenser la hauteur plus grande d’un poteau de remplacement par rapport au poteau d’origine.

La consolidation d’un appui existant par « moisage » est interdite.
Pendant la phase des travaux de remplacement d’un appui, l’Opérateur doit mettre en place un système fiable de maintien temporaire des câbles existants et prendre toutes les mesures de façon à éviter tous dérangements sur le réseau et toute gêne ou tout incident à l’égard des riverains et de la circulation routière et piétonne.

Lorsque le nouvel appui est installé, l’Opérateur procède à la réinstallation du réseau (cuivre et coaxial) en réutilisant généralement les armements de l’ancien appui et en procédant aux réglages de la tension des câbles (conformément aux données constructeur indiquées dans le tableau de l’annexe D3).

Les différents boîtiers sont réinstallés à l’identique et les connexions éventuelles aux prises de terre sont rétablies.

Une étiquette bleue indiquant le même numéro de l’appui est ensuite fixée sur l’appui à 1,60 m du sol. L’étiquette est fixée par des clous galvanisés pour les poteaux bois et par du feuillard galvanisé homologué (10 mm x 0,40 mm) pour les poteaux métalliques. Le chantier est débarrassé de tous déchets et remis en état conformément aux exigences du gestionnaire de voirie.

Les poteaux bois déposés constituent des déchets devant être traités dans des filières spécialisées. En aucun cas ils ne doivent être cédés ou brûlés. Ces poteaux sont ramenés par l’Opérateur sur le lieu de stockage précisé sur la commande concernée.

Les poteaux métalliques déposés, classés comme des déchets industriels banals, doivent passer par des filières de ferrailleurs. Ils doivent faire l’objet d’un certificat de destruction pour éviter qu’ils puissent constituer...
des pièges à oiseau lors d'un réemploi éventuel. Ces poteaux sont ramenés par l'Opérateur sur le lieu de stockage précisé sur la commande concernée.

A la fin des travaux l'Opérateur retourne au guichet unique des commandes du RIP, la fiche d'appui complétée de toutes les données relatives au nouvel appui avec la date de fin de travaux.

Cas particulier des appuis plantés en zone difficile :

Certaines configurations de terrain peuvent rendre difficile le respect des profondeurs d'implantations spécifiées ci-dessus : canalisations existantes, présence de roches ou massifs durs...

La diminution de la profondeur d'implantation peut être réduite d'un tiers avec des poteaux métalliques dans un massif de béton avec des cotes spécifiques en fonction de la hauteur du poteau et selon la résistance du sol.

<table>
<thead>
<tr>
<th>Type de massif</th>
<th>Hauteur poteau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 m</td>
</tr>
<tr>
<td>Résistance au sol 2 Kg/cm³</td>
<td>Coté (C)</td>
</tr>
<tr>
<td></td>
<td>Profondeur (P)</td>
</tr>
<tr>
<td>Résistance au sol 3 Kg/cm³</td>
<td>Coté (C)</td>
</tr>
<tr>
<td></td>
<td>Profondeur (P)</td>
</tr>
</tbody>
</table>

Un Opérateur ne pourra recourir à la confection d'un massif de béton que lorsque le poteau à remplacer est lui-même déjà intégré dans un tel massif.

Cas particulier des appuis inaccessibles véhicule (INV)

Les poteaux inaccessibles à la nacelle sont identifiés dans le SI du RIP sous le code INV. Cette identification correspond aux poteaux dont l'approche d'un véhicule n'est pas possible à moins de 5 mètres. Les poteaux bois doivent être remplacés par un poteau métallique avant ascension.

Modèle opératoire par plantation d'un nouveau poteau mitoyen de l'ancien

Avant d'entreprendre les travaux, il est nécessaire de prendre en compte les moyens d'accès et les conditions d'acheminement du matériel.

article 4 – LES MATERIELS

Pour des raisons de spécifications techniques et d'homogénéité d'ensemble, l'utilisation de matériel parmi celui présenté ci-après est obligatoire.

Seuls les types de dispositifs d'arrêt, de suspension, de lovage et boîtier optique sont au choix de l'Opérateur en adéquation avec ses types de câbles.
4.1 Les différents poteaux utilisés sur le RIP

4.1.1 Les poteaux bois

Les poteaux bois sont actuellement approvisionnés sur le RIP sont de 2 types : Les poteaux bois classiques dont l’effort nominal est établi entre 100 et 160 daN selon la hauteur et les poteaux bois de type EDF de diamètre plus important dont l’effort nominal est établi à 190 daN.

La gamme des hauteurs des poteaux bois est de 6, 7 et 8 mètres (7 et 8 mètres pour les bois type EDF). Des poteaux de 10 mètres et très rarement de 12 mètres peuvent cependant être rencontrés.

Les sociétés FBI, Livari Mononen et GBI sont les fournisseurs sur le RIP pour les poteaux bois.
Poteau Bois

Marquage avec plaquette de signalisation (nouveau poteau bois)
Plaquette PeHD de Ø 49 mm située à 3m50 de la base du poteau.
Elle indique sur 3 lignes :
La propriété de la collectivité, la hauteur du poteau en mètre suivie de la mention 190 pour les poteaux type EDF, le lettre A pour les essences sapin/épicéa ou la lettre P pour les essences pin, la mention VE indique le traitement aux cuivres organiques, l’année de fabrication sur 4 chiffres, le code de traçabilité (une lettre indiquant le chantier de fabrication, 4 chiffres), les mentions obligatoires du marquage CE, le nom du fournisseur.

Marquage à 2 clous (ancien poteau bois)
Premier clou à 3.50 m de la base indiquant la propriété de la collectivité, un code fournisseur sur une lettre qui est suivi éventuellement d’un A pour les essences « sapin »

Aspect du poteau neuf
Rectitude : une courbure naturelle est admise, lorsqu’elle affecte l’intégralité de la longueur du poteau et dans la mesure où une ligne droite, partant du centre du sommet et allant jusqu’au centre de la base, reste à l’intérieur du poteau (règle de la ficelle). Les doubles courbures et courbures localisées ne sont pas autorisées.

Fentes : Les fentes présentes le long des fibres, sont naturelles et ne sont pas reconnues en tant que défauts, à conditions qu’elles soient spécifiées dans les limites suivantes : les fentes ne doivent pas avoir une profondeur supérieure à la moitié du diamètre en un point le long du poteau (excepté aux extrémités). Une seule fente continue ne doit pas excéder 50% de la longueur du poteau.

Tête : l’extrémité supérieure est façonnée soit en pointe, soit en biseau (2 pans). Il n’est pas nécessaire de poser une coiffe à l’installation.

Rappels importants sur les appuis bois :
- vérifier l’état du poteau avant de l’implanter sur une artère

- le calage des appuis adapté au sens du tirage, ou sur 3 directions à 120° en cas d’effort « neutre »
- la sur-profondeur de 15 cm pour les appuis moisés ou en talus
- la dalle d’assise et/ou l’ancrage pour les appuis haubanés et couples (poteaux en compression)
- interdiction formelle de sectionner le pied des poteaux (risques importants de pourriture)

Lors des manipulations effectuées par les agents :
- porter des gants et chaussures de sécurité
- manipuler les poteaux un par un à 2 ou 3 agents

4.1.2 Les poteaux métalliques
Les poteaux métalliques actuellement approvisionnés sur le RIP auprès de la société Petitjean et GHM sont de 2 types : Les poteaux métalliques « Lignes » dont l’effort nominal est établi entre 130 et 175 daN selon la hauteur et les poteaux métalliques « Renforcés » dont l’effort nominal est établi à 300 daN.
D’autres poteaux métalliques existent dans le réseau. Il s’agit de poteaux de type Tirage dont l’effort nominal se situe entre 220 et 330 daN, des poteaux d’ancienne génération dont l’effort nominal s’apparente aux poteaux métalliques « Lignes » et des poteaux dits « Mâts lorrains » dont l’effort nominal s’apparente aux poteaux métalliques « Simples X » dont l’effort nominal est établi à 90 daN.
La gamme des hauteurs des poteaux métalliques est de 6, 7 et 8 mètres
Composition
Acier galvanisé à chaud (dépôt de zinc d’une épaisseur moyenne de 70 microns)

Aspect
Rectiligne, sans chocs, sans zones non galvanisées. Présence en tête :
- d’une cornière permettant la pose d’une traverse sans fixation.
- de 4 trous traversant pour fixer un armement à l’aide d’un boulon Ø 14 ou pour fixer la traverse en cas de tirage asymétrique.

Depuis début 2008, l’obturateur est intégré à la structure du poteau.

Marquage signalétique : gravé de haut en bas : le type de poteau (S, I, L, X, T ou R1), la hauteur, l’année de fabrication sur 2 chiffres. Le nom du fournisseur est également gravé sur le fût (GHM, PTJ pour Petitjean).

Marquage de traçabilité : suivant le fournisseur, il est indiqué sur une étiquette collée sur le fût ou gravé comme le marquage signalétique.

La base de l’étiquette ou le bas des caractères gravés sont situés à 3,50 m du pied du poteau.

Marquage et profondeur d’implantation : le marquage d’implantation est un trou de 8 mm (situé à h/10 + 70 cm) quel que soit le type.

Il existe 4 types de poteau métallique :
S, L ou I = métal ligne, T = métal tirage
X = métal léger, R = métal renforcé

La différence entre les appuis métalliques L, T, X ou R provient de la qualité de l’acier qui lui confère une meilleure résistance à l’effort.

Les appuis métalliques léger X et tirage T ne sont plus approvisionnés sur le RIP mais reste présent dans le réseau aérien.

<table>
<thead>
<tr>
<th>Hp</th>
<th>Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 m</td>
<td>1.30 m</td>
</tr>
<tr>
<td>7 m</td>
<td>1.40 m</td>
</tr>
<tr>
<td>8 m</td>
<td>1.50 m</td>
</tr>
</tbody>
</table>

Rappels importants sur les appuis métalliques :
- le calage des appuis adapté au sens du tirage, ou sur 3 directions à 120° en cas d’effort « neutre »
- la sur-profondeur de 15 cm en talus
- la dalle d’assise et/ou l’ancrage pour les appuis haubanés et couples (poteaux en compression)
- interdiction formelle de sectionner le pied ou la tête des poteaux (risques importants de corrosion)

Lors des manipulations effectuées par les agents :
- porter des gants et chaussures de sécurité
- manipuler les poteaux un par un à 2 agents

Des poteaux métalliques à section carrée de 70 mm environ de côté peuvent également être rencontrés. Ces poteaux sont appelés « Mâts Lorrains ». Leurs efforts nominaux s’apparentent à ceux des poteaux métalliques simples X. Leur implantation se situe généralement sur des passages étroits ne permettant pas l’implantation de poteau à taille standard. Ils peuvent aussi parfois être fixés sur des murs.

Exemple de poteaux mats lorrains
<table>
<thead>
<tr>
<th>Mât Lorrain section carrée 70x70x5 mm</th>
<th>Mât Lorrain simple équivalent à métal Simple X</th>
<th>Mât Lorrain moisé équivalent à métallique Ligne</th>
<th>Mât Lorrain couple équivalent à couple métallique Ligne</th>
</tr>
</thead>
</table>

4.1.3 Les poteaux composites

Les poteaux composites actuellement approvisionnés sur le RIP auprès de la société NTET sont de 2 types : les poteaux composites « Lignes » dont l’effort nominal est établi 140 à 175 daN. et les poteaux composites « Renforcés » dont l’effort nominal est établi à 300 daN.
4.2 Les matériaux d'armement

Les Opérateurs doivent obligatoirement choisir le matériel d’armement parmi les fournisseurs identifiés (TELENCO, ACET, SM-CI) ayant satisfait au cahier des charges des matériels aériens rédigé et validé par le RIP.

Ce cahier des charges décrit les caractéristiques fonctionnelles et techniques applicables à la prestation de fourniture des matériels présentés ci-dessous.

4.2.1 Rehausse pour réseaux optiques

La rehausse est une pièce fixée en tête d'appui. Cette rehausse permet de positionner un armement en nappe haute au-dessus des nappes existantes sans aucun réaménagement de réseau existant. Ce procédé permet de créer un niveau d’armement supplémentaire. La rehausse sera utilisée dans le cadre du déploiement des réseaux optiques.

<table>
<thead>
<tr>
<th></th>
<th>Ø tête</th>
<th>Ø base</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 7 m</td>
<td>140 mm</td>
<td>270 mm</td>
<td>32 Kg</td>
</tr>
<tr>
<td>L 8 m</td>
<td>140 mm</td>
<td>289 mm</td>
<td>38 Kg</td>
</tr>
<tr>
<td>R1 7 m</td>
<td>160 mm</td>
<td>289 mm</td>
<td>39 Kg</td>
</tr>
<tr>
<td>R1 8 m</td>
<td>160 mm</td>
<td>309 mm</td>
<td>48 Kg</td>
</tr>
</tbody>
</table>
La rehausse permet d’équiper les appuis bois, métal et fibre.

Les armements utilisés sur la rehausse sont généralement des traverses (5/14) ou (5/15).

La vérification de l’état de la tête de poteau est toujours nécessaire avant toute décision d’implantation d’une rehausse. Seules, les rehausses décrites ci-dessous sont utilisables.

Remarque :
Il existe un ancien modèle de rehausse Telenco (Refo) qui n’est plus fabriqué mais présent sur le réseau. Pour ce type de rehausse, il est important de s’assurer que les flasques ou oreilles latérales restent le plus possible en contact avec l’appui afin de garantir une bonne transmission des efforts ainsi qu’une bonne tenue à la torsion de l’ensemble. En cas de malfaçon sur l’installation de cette rehausse, il convient de reprendre son installation ou la remplacer par une nouvelle rehausse TEL ENCO Refo 2 ou SM-CI.

Cette rehausse n’est pas utilisable :

- en présence d’un collier ou de boitiers en tête d’appui bois
- pour rehausser les mâts lorrains.
- pour des armements en déport par rapport à l’axe de l’appui
(L’entretoise tubulaire est nécessaire pour assurer un bon serrage en latéral de la traverse sur la rehausse. Elle se positionne à l’intérieur au point de fixation entre les côtés latéraux de la rehausse)

4.2.2 Rehausses pour Mât Lorrain

Pour rehausser un Mât Lorrain, on utilisera le tube carré de la rehausse SM-CI ou (Refo 2) de Telenco. Ce tube carré de 30 mm de côté est à insérer dans le tube carré du Mât Lorrain de manière à avoir 10 à 15 cm d’écart entre les traverses. Le blocage de ce tube s’effectue par serrage à l’aide d’un boulon et d’une plaquette demi-lune pour mordre en extrémité du mât lorrain pour que l’ensemble soit solidaire.

![Potelet simple](image)

4.2.3 Traverse standards 5/7, 5/14 et 5/15

Traverse (5/7) à 5 trous pour le raccordement clients et utilisable en ferrure d’étoilement
Traverse (5/14) à 11 trous pour le raccordement clients ou multifibre
Traverse (5/15) à 13 trous pour le raccordement clients et multifibre

<table>
<thead>
<tr>
<th>Traverse (5/7) à 5 trous</th>
<th>Traverse (5/14) à 11 trous</th>
<th>Traverse (5/15) à 13 trous</th>
</tr>
</thead>
</table>

La traverse (5/15) peut s’utiliser en armement standard ou dans le cas particulier d’un fort déport par rapport à l’axe du poteau avec une traverse (5/14) utilisée comme jambe de force. Cette configuration permet d’éviter des obstacles pour la pose des câbles par rapport à l’axe de l’appui.
4.2.4 Ferrure d’étoilement

Cette pièce se fixe en extrémité d’une traverse en fer cornière de 40 x 40 x 4 mm et permet, soit la bifurcation d’un câble de branchement, soit la distribution de type “parapluie” pour 4 clients au minimum.

Cette pièce permet la distribution (4 clients au minimum) en extrémité des traverses (5/14), (5/15), (5/19) ou de la console-traverse (CT8).

Elle est fixée sur la traverse à l’aide d’un boulon de 14 mm.

4.2.5 Semelle pour appui bois S190 (ou appui commun)

Cette pièce assure la liaison entre un appui bois S190 ou appui commun et une traverse (5/15).

Cette pièce est utilisée pour la fixation de traverses sur les appuis bois S190 mais peut s’utiliser sur les autres appuis bois si leur diamètre au sommet est suffisant (exemple : poteau de 10 m).

La pièce est réalisée en tôle d’acier découpée, emboutie et pliée.

La traverse est fixée sur cette pièce par deux boulons de 14 mm.

La liaison entre la pièce et le poteau bois est assurée par 4 tirefonds sur des poteaux et par cerclage sur appui commun.
La forme de la semelle prend en compte l'arrondi du poteau et l'arrêt en rotation est assuré par des ergots obtenus par découpe et pliage sur la pièce.

4.2.6 Semelle bois 5/16 pour traverse

Pièce supportant une traverse standard et assurant son arrêt en rotation.
Cette pièce (5/16) est utilisée pour la fixation des traverses (5/14) ou (5/15) sur les poteaux en bois.
Elle est fixée par un boulon traversant le poteau de 14 mm sur la partie supérieure et arrêtée en rotation par un tire-fond à visser 1/21 sur la partie inférieure.
Cette pièce peut être aussi utilisée pour la fixation de traverse (5/15) sur poteau S190.

4.2.7 Console universelle UPB

Pièce mécanique d'armement en acier ou en aluminium permettant de couvrir toutes les configurations de fixation des câbles sur poteaux bois, métalliques ou composites.
L'installation de la console UPB sur poteau bois se fait avec un boulon de tête.
L'installation de la console UPB se fait par cerclage sur poteau métallique et fibre.
Cette pièce peut servir de fixation pour les pinces d’ancrage, d’une traverse (5/14) ou d’un hauban.

4.2.8 Console traverse universelle CT8

Cette pièce permet l’installation de 1 à 6 lignes en parallèle, jusqu’à 16 départs de branchement sur appuis bois ou métal. Elle se fixe sur poteau bois par boulon 1/6 + tirefond 1/21 ou sur poteau métal par feuillards de 20 mm.
4.2.9 Semelle Alpax
Cette pièce est en alpax moulé et nervuré ce qui lui assure une bonne rigidité. Elle se fixe sur les poteaux métalliques par 2 cerclages de feuillard en acier inoxydable de 20 x 0,7 mm. La semelle Alpax peut servir de fixation à tout type de traverse.
Dans le cas où il n’y a pas de câble de branchement sur la semelle Alpax, l’installation d’une traverse (5/15) sera effectuée sur la semelle pour la pose du réseau optique.

4.2.10 Tire-fond
Pièce qui permet de fixer divers armements sur poteau bois.

3 modèles de tirefonds en acier galvanisé à chaud sont utilisés :
- Le tire-fond à visser 12 x 80mm à tête carrée (1/21)
- Le tire-fond à bourrer 10 x 80mm à tête carrée (1/22)
- Le tire fond à visser 13 x 100mm à tête carrée (1/23)

Le tire-fond 1/21 est généralement utilisé pour les semelles 5/16 et les diverses boîtes à fixer sur poteau bois.
Le tire-fond 1/22 est généralement utilisé pour la fixation des entretoises à ouverture variable 20/11 et les brides 2/12 pour boîtes de distribution et de protection.
Le tire-fond 1/23 est généralement utilisé pour la fixation de la rehausse en partie basse uniquement.

4.2.11 Feuillard
Le feuillard en acier inoxydable permet la fixation des armements sur appuis bois, métal ou béton sans perçement de l’appui.
Il existe actuellement 2 dimensions de feuillard en acier inoxydable, fournis en dévidoirs plastiques de 50 m :
- Le feuillard 20 x 0,7 mm
- Le feuillard 10 x 0,4 mm.

La résistance à la rupture en traction est comprise entre 50 et 70 daN/mm².
L’allongement minimal de rupture A est de 45 %.

4.2.12 Agrafe pour feuillard

L’agrafe permet le blocage en tension sans glissement du feuillard sur l’appui.

Il existe actuellement deux modèles d’agrafes en acier inoxydable, fournies en sachets de 100 pièces.
- agrafe de 20 mm pour le feuillard 20 x 0,7 mm
- agrafe de 10 mm pour le feuillard 10 x 0,4 mm.

La résistance à la rupture en traction est supérieure à 700daN pour l’agrafe de 20mm et à 200daN pour l’agrafe de 10mm.

4.2.13 Boulons

Boulons en acier galvanisé à chaud répondant aux fonctions et dimensions suivantes :

<table>
<thead>
<tr>
<th>Fonction du boulon</th>
<th>Dimension de la vis</th>
<th>Dimension de l’écrou</th>
<th>Dimensions plaquettes</th>
<th>Nombre plaquettes</th>
<th>Matériels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulon de tête de ligne et pour entretoise</td>
<td>14×225×145 mm</td>
<td>14 mm</td>
<td>70x35x5 mm</td>
<td>1</td>
<td>Boulon de tête de ligne</td>
</tr>
<tr>
<td>Boulon de moisage</td>
<td>14×350×180 mm</td>
<td>14 mm</td>
<td>70x35x5 mm</td>
<td>2</td>
<td>Boulon de moisage</td>
</tr>
<tr>
<td>Boulon de moisage</td>
<td>14×450×180 mm</td>
<td>14 mm</td>
<td>70x35x5 mm</td>
<td>2</td>
<td>Boulon d’assemblage</td>
</tr>
<tr>
<td>Boulon d’assemblage</td>
<td>14×25×25 mm</td>
<td>14 mm</td>
<td></td>
<td></td>
<td>Boulon d’assemblage</td>
</tr>
<tr>
<td>Boulon d’assemblage</td>
<td>14×60×34 mm</td>
<td>14 mm</td>
<td></td>
<td></td>
<td>Plaque demi-lune et écrous</td>
</tr>
</tbody>
</table>

4.2.14 Entretoises pour poteaux couples

Pièce permettant à 2 poteaux d’être solidarisés afin de faire un appui couple

4 types de matériels sont utilisés actuellement pour consolider les appuis couples bois et métalliques :
Entretoise en « U » 20/4 réalisée en profilé U de 50 x 25 x 5 mm pour utilisation sur les poteaux en bois de hauteur exclusivement 6, 7 et 8 m

Entretoise en « X » 20/5 réalisée en profilé U de 50 x 25 x 5 mm pour utilisation sur les poteaux en bois de 8 m associée avec l’entretoise en « U » 20/4 pour des appuis en courbe et avec un effort de tirage supérieur à 500 daN

Entretoise 20/11 constituée de 2 pièces analogues en acier galvanisé pouvant pivoter autour d’un axe. Les trous de la partie inférieure permettent de réaliser un angle variable entre le piédroit et la jambe de force de 11° à 19° selon l’emprise disponible

<table>
<thead>
<tr>
<th>Modèle cintré</th>
<th>Modèle mécano soudé</th>
<th>Modèle cintré</th>
<th>Entretoise variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.15 Collier (7/1) ou (7/2)
Cette pièce est utilisée soit pour la fixation des haubans ou des ancrages de pieds sur les poteaux bois, soit pour l’arrêt des câbles sur les appuis bois.
La taille du collier (7/2) est adaptée pour l’ancrage de pieds sur les poteaux bois.

4.2.16 Semelle à goupille
Cette pièce est utilisée soit pour la fixation des haubans ou des ancrages de pieds sur les poteaux métalliques, soit pour l’arrêt des câbles sur les appuis métalliques.
Il existe un modèle percée permettant la fixation avec boulon traversant sur appuis bois pour un même usage sauf pour l’ancrage de pieds sur poteaux bois.

4.2.17 Serre-câble

Il existe deux modèles de serre-câbles :

- **le serre-câble à deux boulons (30/02)** utilisé pour l’arrêt des câbles 98 et 99 de petites dimensions et du câble 5/10.
- **le serre-câble à trois boulons (31/01)** utilisé pour l’arrêt des haubans de consolidation et pour les câbles 98 et 99 de grandes dimensions.

4.2.18 Tendeur à lanterne

Ce matériel est utilisé pour le réglage de la tension des haubans de consolidations ou pour le réglage de la tension des câbles autoportés.

- Tendeur à lanterne M12 équipé de deux œillets fermés en extrémité de tiges comportant un filetage à droite et un filetage à gauche.

4.2.19 Hauban souple

Filin acier permettant de haubaner un appui bois ou métal pour consolidation.

- Hauban souple (32/21) constitué de 7 brins d’acier de 2,1 mm +/- 0,1 mm galvanisés à chaud utilisé pour la consolidation des appuis en bois et métalliques.
4.2.20 Cosse-cœur
Pièce servant à protéger le hauban à son point de pliage.

Le cosse-cœur, en acier galvanisé permet de recevoir le hauban 32/31. Son ouverture de 14 mm permet sa pénétration dans l’œil du tendeur 30/4. Il peut servir aussi pour les porteurs des câbles à porteur excentré.

4.2.21 Plaque d’ancrage
Pièce permettant à la jambe de force de l’appui couple d’être bien ancrée au sol et d’améliorer sa tenue à l’arrachement ou à la fixation d’un hauban au pied de l’appui. Elle permet aussi de caller le fond de fouille d’un pied droit de couple ancré.

Il existe deux modèles de plaques, de forme octogonale, et de Ø 200 mm (AP200) et 330 mm (31/06). Ces plaques sont en tôle de 3 mm d’épaisseur embouties et galvanisées à chaud destinées à réaliser divers calages sous les poteaux ou latéralement ; ou à servir de point d’ancrage pour la fixation du hauban de consolidation.

4.2.22 Tige d’ancrage
La tige d’ancrage assure la liaison hauban et plaque dans le sol ou l’ancrage de pied de poteau par liaison entre la plaque d’ancrage et le collier ou la semelle à goupille ou le hauban.

La tige d’ancrage 31/5 est en acier galvanisé à chaud composée d’une tige de Ø14 mm de longueur 1700 mm filetée en son extrémité et terminée à l’autre extrémité par un œillet de Ø22 mm mini). La pièce est livrée avec une plaquette (80 x 80 x 6 mm) et un écrou. On peut aussi utiliser des ancrès à vis ou à ailettes.
4.2.23 Bride pour boîtier
Cette pièce assure la liaison entre le poteau métallique ou bois et le boîtier optique au moyen d’un feuillard (20 x 0,7 mm) côté poteau et de vis entre la pièce et le coffret.
Cette pièce métallique est utilisée pour la fixation du point de branchement optique (PB) sur les poteaux bois avec un tire fond. Cependant, le cerclage du point de branchement optique (PB) sur l’appui directement est admis sur les appuis métalliques et bois.

4.2.24 Coin piton 5/29
Le coin piton est utilisé pour l’accrochage des dispositifs de branchement pour câble 5/99 branchement de câble fibre optique en tête de poteaux bois. La mise en place se fait par enfoncement au marteau.

4.2.25 Console de branchement
Cette pièce permet de fixer 1 ou 2 dispositifs de branchement sur appui bois ou métal.

4.2.26 Étiquettes de marquage sur les Appuis
Les étiquettes de repérage sont utilisées pour le réseau aérien de télécommunication pour poteaux bois, métallique ou fibre. Elles sont de couleur noir, rouge, verte orange et bleue.
Les matières plastiques utilisées doivent conserver leurs propriétés face aux contraintes d’environnement : efforts mécaniques, vibrations, agents chimiques, variations de température et rayonnement ultraviolet conformément à la norme NF C 32-024 [8] et à la norme EN 50289-4-17 méthode C.

La fixation des étiquettes doit pouvoir se réaliser par cerclage, par collier rilsan ou à l’aide de clous d’un diamètre maximum de 2,5 mm.

Les étiquettes de repérages sont de couleur noire, verte, rouge, orange et bleue.

Les étiquettes de signalisation de danger sont de couleur jaune.

Les étiquettes doivent respecter les dimensions ci-dessous :

4.2.27 Matériel pour la protection mécanique et le maintien des câbles

Gaines de protection

Protection gaine demi-lune des descentes de câbles sur le long d’un poteau ou sur une façade de longueur 2 m.

Il existe 2 diamètres de gaines demi-lune :

- 35/35 mm
- 60/60 mm
4.2.28 Dispositif d'arrêt et de suspension pour câbles optiques

Le matériel suivant est indiqué à titre d'information. Le choix est laissé à l'initiative de l'Opérateur selon les règles de l'annexe D3 et les spécifications technique demandées.

Définition :
- **Dispositif d'arrêt** : Mécanisme permettant un départ ou un changement de direction d'un câble aérien de télécommunications.
- **Dispositif de suspension** : Mécanisme destiné à supporter un câble aérien de télécommunication en passage simple sur un poteau.

Les matériels doivent avoir une marque d’identification qui comprend les indications suivantes :
- l’appartenance avec une inscription du nom ou d’un marquage additionnel si l’opérateur l’exige.
- le nom du constructeur ou un symbole ou un sigle en tenant lieu.
- les deux derniers chiffres de l’année du millésime de fabrication.
- une indication du diamètre de/des câbles admissible(s) par le dispositif. Cette identification sera obtenue par gravure ou étiquetage directement visible sur une face extérieure de la pièce ou d’une marque de couleur.

Les conditions d'environnement pour l'utilisation de ces matériels correspondent à la rubrique des sites à température non contrôlée et à des emplacements non protégés contre les intempéries.

En règle générale, les matériaux et technologies s'appuient sur les normes françaises et européennes couramment employées pour ces types de matériels.

Concernant la protection des pièces métalliques contre la corrosion, elle sera au moins équivalente à la galvanisation à chaud selon la norme NF EN ISO 1461.

Les matières plastiques utilisées devront résister au rayonnement UV conformément à la norme EN 50289-4-17 (15).

Les dispositifs de raccordement client devront disposer d’un marquage de couleur verte permettant de les identifier.

Les dispositifs d’arrêt et de suspension doivent pouvoir se fixer sur les armentements du réseau existant.

Les matériels devront supporter les contraintes d'exploitation en efforts permanents et temporaire.

Les dispositifs de suspension doivent supporter une composante d'effort horizontale dans le cas d’un changement de direction pouvant aller jusqu’à 25 degrés par rapport à la direction de la ligne.

Les dispositifs de suspension doivent pouvoir se placer entre deux supports d’armement réseau séparés de 100 mm sans aucun frottement.

Les dispositifs d’arrêt et de suspension doivent permettre un maintien du câble lors du réglage des flèches.
Le choix des pinces d’ancrage et de suspension doit être conforme aux diamètres des câbles optiques

4.2.29 Dispositif de lovage

Le matériel suivant est indiqué à titre d’information. Le choix est laissé à l’initiative de l’Opérateur selon les règles de l’annexe D3 et les spécifications technique demandées, ci-dessous.

Dispositif installé sur un appui permettant le lovage des câbles fibre optique et la fixation de la protection d’épissure. Il peut être en acier galvanisé ou matière PVC résistante aux UV.

Le dispositif de lovage doit respecter les dimensions suivantes :
- une largeur maximum 300 mm et une hauteur maximum 500 mm pour les câbles optique dont le diamètre est inférieur à 13 mm.
- une largeur maximum 500 mm et une hauteur maximum 800 mm pour les câbles optique dont le diamètre supérieur à 13 mm.

Si les dispositifs de lovage sont en acier, la galvanisation doit être conforme à la norme NF EN ISO 1461 selon l’épaisseur de la pièce.

Si les dispositifs de lovage comportent des matières plastiques, ils auront une résistance aux UV et aux conditions climatiques selon les essais préconisés dans la norme EN 50289-4-17 (15) Méthode C.

Les dispositifs de lovage doivent résister aux chocs selon la norme IEC 61300-2-12.

La résistance à l’arrachement des dispositifs de lovage sur poteau doit être supérieure à 100 daN suivant 2 directions (horizontal et vertical).

La résistance à l’arrachement du boitier sur les dispositifs de lovage sur poteau doit respecter la norme IEC 61300-2-X selon la taille du boitier.

4.2.30 Boitier optique

Le matériel suivant est indiqué à titre d’information. Le choix est laissé à l’initiative de l’Opérateur selon les règles de l’annexe D3 et les spécifications technique demandées ci-dessous.

Boitier installée sur un appui permettant les protections d’épissure optique (PEO) et des points de branchement (PB) pour raccordement client.
Si le boîtier optique comporte des matières en acier, la galvanisation doit être conforme à la norme NF EN ISO 1461 selon l’épaisseur de la pièce.

Si le boîtier optique comporte des matières plastiques, ils auront une résistance aux UV et aux conditions climatiques selon les essais préconisés dans la norme EN 50289-4-17 (15) Méthode C.

Le boîtier optique doit résister aux chocs selon la norme IEC 61300-2-12.

Le boîtier optique en aérien doit être IP 56.